Section 8.1: Interval Estimation

Discrete-Event Simulation: A First Course

©2006 Pearson Ed., Inc. 0-13-142917-5
Theorem (Central Limit Theorem)

If X_1, X_2, \ldots, X_n is an iid sequence of RVs with

- common mean μ
- common standard deviation σ

and if \bar{X} is the (sample) mean of these RVs

\[
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

then \bar{X} approaches a Normal($\mu, \sigma/\sqrt{n}$) RV as $n \rightarrow \infty$
Choose one of the random variate generators in \texttt{rvgs} to generate a sequence of random variable samples with fixed sample size $n > 1$

With the n-point samples indexed $j = 1, 2, \ldots$, the corresponding sample mean \bar{X}_j and sample standard deviation s_j can be calculated using Algorithm 4.1.1

A continuous-data histogram can be created using program \texttt{cdh}
Properties of Sample Mean Histogram

- Independent of n,
 - the histogram mean is approximately μ
 - the histogram standard deviation is approximately σ/\sqrt{n}
- If n is sufficiently large,
 - the histogram density approximates the $Normal(\mu, \sigma/\sqrt{n})$ pdf
Example 8.1.2: 10000 n-point Exponential(μ) samples

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

\[n = 9 \]

\[n = 36 \]
The histogram mean and standard deviation are approximately μ and σ/\sqrt{n}.

The histogram density corresponding to the 36-point sample means is closely matched by the pdf of a $Normal(\mu, \sigma/\sqrt{n})$ RV.

For $Exponential(\mu)$ samples, $n = 36$ is large enough for the sample mean to be approximately $Normal(\mu, \sigma/\sqrt{n})$.

The histogram density corresponding to the 9-point sample means matches relatively well, but with a skew to the left.

$n = 9$ is not large enough.
Essentially all of the sample means are within an interval of width of $4\sigma/\sqrt{n}$ centered about μ

Because $\sigma/\sqrt{n} \to 0$ as $n \to \infty$, if n is large, all the sample means will be close to μ

In general:

- The accuracy of the $\text{Normal}(\mu, \sigma/\sqrt{n})$ pdf approximation is dependent on the shape of a fixed population pdf.
- If the samples are drawn from a population with
 - a highly asymmetric pdf (like the $\text{Exponential}(\mu)$ pdf): n may need to be as large as 30 or more for good fit.
 - a pdf symmetric about the mean (like the $\text{Uniform}(a, b)$ pdf): n as small as 10 or less may produce a good fit.
We can standardize the sample means \(\bar{x}_1, \bar{x}_2, \bar{x}_3, \ldots \) by subtracting \(\mu \) and dividing the result by \(\sigma / \sqrt{n} \) to form the standardized sample means \(z_1, z_2, z_3, \ldots \) defined by

\[
z_j = \frac{\bar{x}_j - \mu}{\sigma / \sqrt{n}} \quad j = 1, 2, 3, \ldots
\]

Generate a continuous-data histogram for the standardized sample means by program \text{cdh}

\[z_1, z_2, z_3, \ldots \rightarrow \text{cdh} \rightarrow \text{histogram mean} \rightarrow \text{histogram standard deviation} \rightarrow \text{histogram density} \]
Properties of Standardized Sample Mean Histogram

- Independent of n,
 - the histogram mean is approximately 0
 - the histogram standard deviation is approximately 1
- If n is sufficiently large,
 - the histogram density approximates the $\text{Normal}(0, 1)$ pdf
Example 8.1.4

The sample means from Example 8.1.2 were standardized.

\[
z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}
\]

For \(n = 9 \):

- Mean: \(\bar{x} \)
- Standard error: \(\sigma / \sqrt{n} \)
- Standardized value: \(z \)

For \(n = 36 \):

- Mean: \(\bar{x} \)
- Standard error: \(\sigma / \sqrt{n} \)
- Standardized value: \(z \)
Properties of the Histogram in Example 8.1.4

- The histogram mean and standard deviation are approximately 0.0 and 1.0 respectively.
- The histogram density corresponding to the 36-point sample means matches the pdf of a Normal$(0, 1)$ random variable almost exactly.
- The histogram density corresponding to the 9-point sample means matches the pdf of a Normal$(0, 1)$ random variable, but not as well.
Want to replace *population* standard deviation σ with *sample* standard deviation s_j in standardization equation

$$z_j = \frac{\bar{x}_j - \mu}{\sigma/\sqrt{n}} \quad j = 1, 2, 3, \ldots$$

Definition 8.1.1

- Each sample mean \bar{x}_j is a *point estimate* of μ
- Each sample variance s_j^2 is a *point estimate* of σ^2
- Each sample standard deviation s_j is a *point estimate* of σ
The sample mean is an *unbiased* point estimate of μ

- The mean of $\bar{x}_1, \bar{x}_2, \bar{x}_3 \ldots$ will converge to μ

The sample variance is a *biased* point estimate of σ^2

- The mean of $s_1^2, s_2^2, s_3^2, \ldots$ will converge to $(n - 1)\sigma^2 / n$, not σ^2

To remove this $(n - 1)/n$ bias, it is conventional to multiply the sample variance by a *bias correction* $n/(n - 1)$

The point estimate of σ/\sqrt{n} is

$$\frac{\left(\sqrt{\frac{n}{n-1}}\right) s_j}{\sqrt{n}} = \frac{s_j}{\sqrt{n-1}}$$
Example 8.1.5

Calculate the t-statistic

$$t_j = \frac{\bar{x}_j - \mu}{s_j / \sqrt{n - 1}} \quad j = 1, 2, 3, \ldots$$

Generate a continuous-data histogram using cdh

$t_1, t_2, t_3, \ldots \xrightarrow{\text{cdh}} \text{histogram mean}$

$\text{cdh} \xrightarrow{\text{histogram standard deviation}} \text{histogram density}$
If $n > 2$, the histogram mean is approximately 0.

If $n > 3$, the histogram standard deviation is approximately $\sqrt{\frac{n-1}{n-3}}$.

If n is sufficiently large, the histogram density approximates the pdf of a $\text{Student}(n-1)$ random variable.
Example 8.1.6

Generate t-statistics from Example 8.1.2

\[
t = \frac{\bar{x} - \mu}{s / \sqrt{n - 1}}
\]

n = 9

n = 36
Properties of the Histogram in Example 8.1.6

- The histogram mean and standard deviation are approximately 0.0 and \(\sqrt{\frac{n - 1}{n - 3}} \approx 1.0 \) respectively.
- The histogram density corresponding to the 36-point sample means matches the pdf of a \(\text{Student}(35) \) RV relatively well.
- The histogram density corresponding to the 9-point sample means matches the pdf of a \(\text{Student}(8) \) RV, but not as well.
Theorem (8.1.2)

If x_1, x_2, \ldots, x_n is an (independent) random sample from a “source” of data with unknown mean μ, if \bar{x} and s are the mean and standard deviation of this sample, and if n is large, it is approximately true that

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n-1}}$$

is a Student$(n-1)$ random variate

- Theorem 8.1.2 provides the justification for estimating an interval that is likely to contain the mean μ
- As $n \to \infty$, the Student$(n-1)$ distribution becomes indistinguishable from Normal$(0, 1)$
Suppose

- T is a $\text{Student}(n - 1)$ random variable
- α is a “confidence parameter” with $0.0 < \alpha < 1.0$

Then there exists a corresponding positive real number t^*

$$\Pr(-t^* \leq T \leq t^*) = 1 - \alpha$$
Suppose \(\mu \) is unknown. Since \(t \approx \text{Student}(n - 1) \),

\[
-t^* \leq \frac{\bar{x} - \mu}{s/\sqrt{n - 1}} \leq t^*
\]

will be approximately true with probability \(1 - \alpha \)

- **Right inequality:** \(\frac{\bar{x} - \mu}{s/\sqrt{n - 1}} \leq t^* \iff \bar{x} - \frac{t^*s}{\sqrt{n - 1}} \leq \mu \)
- **Left inequality:** \(-t^* \leq \frac{\bar{x} - \mu}{s/\sqrt{n - 1}} \iff \mu \leq \bar{x} + \frac{t^*s}{\sqrt{n - 1}} \)

So, with probability \(1 - \alpha \) (approximately),

\[
\bar{x} - \frac{t^*s}{\sqrt{n - 1}} \leq \mu \leq \bar{x} + \frac{t^*s}{\sqrt{n - 1}}
\]
Theorem 8.1.3

If

- x_1, x_2, \ldots, x_n is an independent random sample from a “source” of data with unknown mean μ
- \bar{x} and s are the sample mean and sample standard deviation
- n is large

Then, given a confidence parameter α with $0.0 < \alpha < 1.0$, there exists an associated positive real number t^* such that

$$\Pr\left(\bar{x} - \frac{t^*s}{\sqrt{n - 1}} \leq \mu \leq \bar{x} + \frac{t^*s}{\sqrt{n - 1}} \right) \approx 1 - \alpha$$
Example 8.1.7

If $\alpha = 0.05$, we are 95% confident that μ lies somewhere between

$$\bar{x} - \frac{t^* s}{\sqrt{n-1}} \quad \text{and} \quad \bar{x} + \frac{t^* s}{\sqrt{n-1}}$$

For a fixed sample size n and level of confidence $1 - \alpha$, use `rvms` to determine $t^* = \text{idfStudent}(n - 1, 1 - \alpha/2)$

For example, if $n = 30$ and $\alpha = 0.05$, then $t^* = \text{idfStudent}(29, 0.975) \approx 2.045$
Definition 8.1.2

- The interval defined by the two endpoints

\[\bar{x} \pm \frac{t^* s}{\sqrt{n - 1}} \]

is a \((1 - \alpha) \times 100\%\) confidence interval estimate for \(\mu\)

- \((1 - \alpha)\) is the level of confidence associated with this interval estimate and \(t^*\) is the critical value of \(t\)
Algorithm 8.1.1

To calculate an interval estimate for the unknown mean μ of the population from which a random sample $x_1, x_2, x_3, \ldots, x_n$ was drawn:

- Pick a level of confidence $1 - \alpha$ (typically $\alpha = 0.05$)
- Calculate the sample mean \bar{x} and standard deviation s (use Algorithm 4.1.1)
- Calculate the critical value $t^* = \text{idfStudent}(n - 1, 1 - \alpha/2)$
- Calculate the interval endpoints

$$
\bar{x} \pm \frac{t^* s}{\sqrt{n - 1}}
$$

If n is sufficiently large, then you are $(1 - \alpha) \times 100\%$ confident that the mean μ lies within the interval. The midpoint of the interval is \bar{x}.
Example 8.1.8

The random sample of size $n = 10$:

$$
\begin{array}{cccccc}
1.051 & 6.438 & 2.646 & 0.805 & 1.505 \\
0.546 & 2.281 & 2.822 & 0.414 & 1.307 \\
\end{array}
$$

is drawn from a population with unknown mean μ

- $\bar{x} = 1.982$ and $s = 1.690$
- To calculate a 90% confidence interval estimate:
 - Determine $t^* = t_{df \text{Student}}(9, 0.95) \approx 1.833$
 - Interval: $1.982 \pm (1.833)(1.690/\sqrt{9}) = 1.982 \pm 1.032$
- We are approximately 90% confident that μ is between 0.950 and 3.014
To calculate a 95% confidence interval estimate:

- Determine \(t^* = \text{idfStudent}(9, 0.975) \approx 2.262 \)
- Interval: \(1.982 \pm (2.262)(1.690 / \sqrt{9}) = 1.982 \pm 1.274 \)

We are approximately 95% confident that \(\mu \) is between 0.708 and 3.256

To calculate a 99% confidence interval estimate:

- Determine \(t^* = \text{idfStudent}(9, 0.995) \approx 3.250 \)
- Interval: \(1.982 \pm (3.250)(1.690 / \sqrt{9}) = 1.982 \pm 1.832 \)

We are approximately 99% confident that \(\mu \) is between 0.150 and 3.814

Note: \(n = 10 \) is not large
For a fixed sample size
- More confidence can be achieved *only* at the expense of a larger interval
- A smaller interval can be achieved *only* at the expense of less confidence

The only way to make the interval smaller without lessening the level of confidence is to increase the sample size

Good news: with simulation, we can collect more data

Bad news: interval size decreases with \sqrt{n}, not n
How Much More Data Is Enough?

- How large should n be to achieve an interval estimate $\bar{x} \pm w$ where w is user-specified?
- Answer: Use Algorithm 4.1.1 with Algorithm 8.1.1 to iteratively collect data until a specified interval width is achieved.
- Note: if n is large then t^* is essentially independent of n.

\[t^* = \text{idfStudent}(n - 1, 1 - \alpha/2) \]

<table>
<thead>
<tr>
<th>n</th>
<th>t^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.576 ((\alpha = 0.01))</td>
</tr>
<tr>
<td>5</td>
<td>1.960 ((\alpha = 0.05))</td>
</tr>
<tr>
<td>10</td>
<td>1.645 ((\alpha = 0.10))</td>
</tr>
</tbody>
</table>
The asymptotic (large n) value of t^* is

$$t^*_\infty = \lim_{n \to \infty} \text{idfStudent}(n-1, 1-\alpha/2) = \text{idfNormal}(0.0, 1.0, 1-\alpha/2)$$

Unless α is very close to 0.0, if $n > 40$, the asymptotic value t^*_∞ can be used.

If $n > 40$ and wish to construct a 95% confidence interval estimate, $t^*_\infty = 1.960$ can be used in Algorithm 8.1.1.
Example 8.1.9

Given a reasonable guess for s and a user-specified \textit{half-width} parameter w, if t_∞^* is used in place of t^*, n can be determined by solving $w = \frac{t^*s}{\sqrt{n - 1}}$ for n:

$$n = \left\lfloor \left(\frac{t_\infty^*s}{w} \right)^2 \right\rfloor + 1$$

provided $n > 40$

For example, if $s = 3.0$ and want to estimate μ with 95% confidence to within ± 0.5, a value of $n = 139$ should be used.
If a reasonable guess for s is not available, w can be specified as a proportion of s thereby eliminating s from the previous equation.

For example, if w is 10% of s and 95% confidence is desired, $n = 385$ should be used to estimate μ to within $\pm w$.
Program estimate automates the interval estimation process

A typical application: estimate the value of an unknown population mean μ by using n replications to generate an independent random variate sample x_1, x_2, \ldots, x_n

Function `Generate()` represents a discrete-event or Monte Carlo simulation program that returns a random variate output x

Using the Generate Method

```plaintext
for (i = 1; i <= n; i++)
    x_i = Generate();
return x_1, x_2, ..., x_n;
```

Given a level of confidence $1 - \alpha$, program estimate can be used with x_1, x_2, \ldots, x_n to compute an interval estimate for μ
Algorithm 8.1.2

Given an interval half-width w and level of confidence $1 - \alpha$, the algorithm computes the interval estimate $\bar{x} \pm w$

\[
t = \text{idfNormal}(0.0, 1.0, 1-\alpha/2); /* t_\infty */
\]
\[
x = \text{Generate}();
\]
\[
n = 1; \; \nu = 0.0; \; \bar{x} = x;
\]
\[
\text{while } ((n<40) \text{ or } (t*\sqrt{\nu/n} > w * \sqrt{n-1}))\{
\]
\[
\quad x = \text{Generate}();
\]
\[
\quad n++;
\]
\[
\quad d = x - \bar{x};
\]
\[
\quad \nu = \nu + d * d * (n - 1) / n;
\]
\[
\quad \bar{x} = \bar{x} + d / n;
\]
\[
\}
\]
\[
\text{return } n, \bar{x};
\]

- It is important to appreciate the need for sample independence in Algorithms 8.1.1 and 8.1.2
The meaning of confidence

Incorrect:

- “For this 95% confidence interval, the probability that μ is within this interval is 0.95”
- Why incorrect?
 - μ is not a random variable; it is constant (but unknown)
 - The *interval endpoints* are random

Correct:

- “If I create many 95% confidence intervals, approximately 95% of them should contain μ”
Example 8.1.11

- 100 samples of size $n = 9$ drawn from $\text{Normal}(6, 3)$ population
- For each sample, construct a 95% confidence interval
- 95 intervals contain $\mu = 6$
- Three intervals “too low”, two intervals “too high”

Discrete-Event Simulation: A First Course